Predicting Radiological Panel Opinions Using a Panel of Machine Learning Classifiers
نویسندگان
چکیده
This paper uses an ensemble of classifiers and active learning strategies to predict radiologists’ assessment of the nodules of the Lung Image Database Consortium (LIDC). In particular, the paper presents machine learning classifiers that model agreement among ratings in seven semantic characteristics: spiculation, lobulation, texture, sphericity, margin, subtlety, and malignancy. The ensemble of classifiers (which can be considered as a computer panel of experts) uses 64 image features of the nodules across four categories (shape, intensity, texture, and size) to predict semantic characteristics. The active learning begins the training phase with nodules on which radiologists’ semantic ratings agree, and incrementally learns how to classify nodules on which the radiologists do not agree. Using our proposed approach, the classification accuracy of the ensemble of classifiers is higher than the accuracy of a single classifier. In the long run, our proposed approach can be used to increase consistency among radiological interpretations by providing physicians a “second read”.
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملدستهبندی پرسشها با استفاده از ترکیب دستهبندها
Question answering systems are produced and developed to provide exact answers to the question posted in natural language. One of the most important parts of question answering systems is question classification. The purpose of question classification is predicting the kind of answer needed for the question in natural language. The literature works can be categorized as rule-based and learning...
متن کاملPredicting Shear Capacity of Panel Zone Using Neural Network and Genetic Algorithm
Investigating the behavior of the box-shaped column panel zone has been one of the major concerns of scientists in the field. In the American Institute of Steel Construction the shear capacity of I-shaped cross- sections with low column thickness is calculated. This paper determines the shear capacity of panel zone in steel columns with box-shaped cross-sections by using artificial neural netw...
متن کاملClimate Prediction via Matrix Completion
Recently, machine learning has been applied to the problem of predicting future climates, informed by the multi-model ensemble of physics-based climate models that inform the Intergovernmental Panel on Climate Change (IPCC). Past work (Monteleoni et al., 2011, McQuade and Monteleoni, 2012) demonstrated the promise of online learning algorithms applied to this problem. Here we propose a novel ap...
متن کاملUsing Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 2 شماره
صفحات -
تاریخ انتشار 2009